Искусственная звезда: проект ИТЭР
Есть в науке проекты, от которых дух захватывает: Международная космическая станция или Большой адронный коллайдер. Но подавляющее большинство землян не смогут объяснить, в чём польза этих проектов и зачем учёные потратили столько денег. И вот на наших глазах создаётся установка, которая навсегда может изменить жизнь планеты, — Международный экспериментальный термоядерный реактор ITER. Если проект завершится удачно, человечество получит очень дешёвую и чистую энергию. Но обо всём по порядку.
1. АНАЛОГ СОЛНЦА
В далёком 1920 году британский физик Артур Эддингтон предположил, что в недрах звёзд из водорода синтезируется гелий, в результате чего высвобождается огромное количество энергии. Этот процесс называется термоядерным синтезом. Получается, создатели ИТЭР пытаются в земных условиях повторить то, что происходит на Солнце. А что там происходит?
У водорода, самого простого химического элемента, есть изотопы, т.е. разные версии строения ядра (у них одинаковое число протонов, но разное количество нейтронов). В реакции задействованы ядра дейтерия и трития: ядро дейтерия состоит из протона и нейтрона, а ядро трития — из протона и двух нейтронов. В обычных условиях одинаково заряженные ядра отталкиваются друг от друга, однако при очень высоких температурах они могут сталкиваться. В центре Солнца температура примерно 15 миллионов градусов Цельсия и гигантское давление — те самые условия, которые необходимы для термоядерного синтеза.
При соударении ядер между ними появляется сильное взаимодействие, и возникает новое ядро уже другого химического элемента — гелия. При этом образуется один свободный нейтрон и выделяется большое количество энергии.
2. РОЖДЁННЫЙ В СССР
Но как же на Земле нагреть водород до 15 миллионов градусов Цельсия? Ведь ни один материал не выдержит эту температуру! Да, это проблема. И впервые её решили в 1954 году в Курчатовском институте. Там построили первую в мире тороидальную камеру с магнитными катушками, а коротко — токамак. Советские учёные предположили, что горячий ионизированный газ — плазму — можно удержать в вакууме с помощью магнитного поля. Т.е. раскалённая плазма не будет соприкасаться со стенками реактора, одна проблема (материаловедческая) снимается.
Как следует из названия, токамак имеет форму тора (самый простой пример тора — бублик). Это тороидальная вакуумная камера, на которую намотаны катушки для создания тороидального магнитного поля. Из вакуумной камеры сначала откачивают воздух, а затем заполняют её смесью дейтерия и трития. Затем с помощью индуктора в камере создают вихревое электрическое поле. Оно вызывает протекание тока и зажигание в камере плазмы.
Проблема в том, что нужно очень много электроэнергии, чтобы реакция началась. Ещё больше энергии нужно, чтобы поддерживать процесс. Да и разогреть плазму до нужной температуры только с помощью тока невозможно. Нужны и другие инструменты, например, микроволновое излучение на так называемых резонансных частотах или инжекция быстрых нейтральных атомов.
В мире было построено порядка сотни токамаков, но все они потребляют гораздо больше энергии, чем могут произвести.
3. В 10 РАЗ ГОРЯЧЕЕ СОЛНЦА
Итак, до нужной температуры плазму разогревает ток и микроволновое излучение. Кстати, а какая всё же температура нужна? К сожалению, человек пока не придумал, как создать давление, сопоставимое с ядром Солнца. Поэтому для преодоления кулоновского барьера (одинаково заряженные частицы отталкиваются) плазму нужно разогреть до… 150 миллионов градусов Цельсия. Это невероятно, но иначе ничего не получится.
Пока это никому не удалось. Лучший показатель у южнокорейского токамака KSTAR: там учёным удалось нагреть плазму до 50 миллионов градусов и удерживать её в магнитном поле более 70 секунд. А нужно — 1000 секунд. Причём в том эксперименте 2016 года плазма была сформирована дейтерием и протием (тоже изотоп водорода — самый лёгкий, состоит из одного протона), но не тритием, необходимым для термоядерного синтеза. В общем, учёные ещё работают над решением этой проблемы.
И ещё небольшая деталь: мощное магнитное поле обеспечивают в свою очередь сверхпроводящие магниты, которые нужно охладить в вакуумной камере до практически абсолютного нуля – минус 269°C (иначе сверхпроводимость исчезнет). А это означает, что между очень холодным магнитом и сверхгорячей плазмой (150 000 000°C) будет всего 3 метра!
4. КТО И ГДЕ СТРОИТ ЭТО ЧУДО ТЕХНИКИ?
Экспериментальный термоядерный реактор строится на юге Франции, неподалёку от исследовательского центра ядерной энергетики «Кадараш». Ближайший крупный город — Марсель (до него 60 км). Но ITER — это международный проект, а не французский. В его создании принимают участие Евросоюз, США, Япония, Индия, Южная Корея, Китай и Россия, в общей сложности 35 стран. Здесь доступен виртуальный тур по стройплощадке.
Может возникнуть вопрос: почему в проекте участвуют 35 стран, а готовый реактор будет только во Франции? Вопрос справедливый, и ответ на него прекрасен.
С самого начала ИТЭР задумывался как кооперация национальных термоядерных программ, поэтому после запуска экспериментальной установки во Франции все страны-участницы проекта будут обладать технологиями, чтобы строить свои уже промышленные станции. Для этого страны вкладывают в проект не столько «живые» деньги (на них приходится только 10% всех затрат), сколько «натуральные» поставки: страны конструируют и создают отдельные узлы, причём порой одни и те же части делают разные страны, чтобы технологии были у всех. Например, производство секторов вакуумной камеры ИТЭР поделено между Европой (7 секторов) и Кореей (2 сектора); центральный соленоид производится совместными усилиями США и Японии; производство и испытания дивертора распределено между Европой, Россией и Японией; Индия и США отвечают за системы водяного охлаждения; система бланкета будет производиться в Китае, Европе, Корее, России и США и, наконец, шесть членов ИТЭР (кроме Индии) задействованы в производстве магнитов для ИТЭР.
Завершение проекта уже несколько раз откладывалось. Сегодня предполагаемая дата получения первой плазмы — конец 2025 года, спустя 40 лет после переговоров Рональда Рейгана и Михаила Горбачёва в Женеве (именно советский лидер предложил совместную работу над проектом).
И главное — учёные рассчитывают получить в 10 раз больше энергии, чем потребляем сам реактор. Возможно, это самая грандиозная задача, ведь пока ни один токамак в мире не смог выдать даже 100% от потраченного, не говоря уже о 1000%.
5. СКОЛЬКО ЭТО СТОИТ?
Наверняка, этот вопрос у вас появился уже давно. Конечно, ИТЭР — это дорогой проект. Сегодня его стоимость оценивается в 22 миллиарда евро. Но не нужно пугаться этой цифры. Во-первых, как мы уже отметили, страны вкладывают только 10% «живыми» деньгами, а остальное — это инвестиции в собственную науку и высокотехнологичное производство. Во-вторых, в случае успеха человечество получит технологию, которая в корне изменит генерацию электроэнергии. И в этом случае цена совсем не высокая (для сравнения: Катар заявил, что в рамках подготовки к Чемпионату мира по футболу вложит в инфраструктуру порядка 150 миллиардов евро).
Китай, Индия, Япония, Южная Корея, Россия и США взяли на себя по 9,1% строительства ИТЭР каждая. Доля Европы — 45%.
6. УЧАСТИЕ РОССИИ
Россия отвечает за создание, поставку и наладку 25 важных систем и компонентов ИТЭР: гиротроны (170 ГГц); проводники; коммутирующая аппаратура; установки для испытаний Порт-плагов и сами Порт-плаги; купол дивертора и тепловые испытания; катушка полоидального поля; верхние патрубки; диагностические системы; первая стенка, соединители модуля бланкета. Подробнее о том, что это, можно узнать на официальной странице Российского Агенства ИТЭР.
Среди организаций в проекте участвуют:
- Госкорпорация «Росатом»
- Национальный исследовательский центр «Курчатовский Институт»
- НИИЭФА им.Д.В. Ефремова (Санкт-Петербург, предприятие Росатома)
- НИКИЭТ им. Н.А. Доллежаля (предприятие Росатома)
- Институт прикладной физики РАН (Нижний Новгород)
- Троицкий институт инновационных и термоядерных исследований (ТРИНИТИ, предприятие Росатома)
- Физико-технический институт им. А.Ф. Иоффе РАН
- Высокотехнологический НИИ неорганических материалов имени академика А.А. Бочвара (предприятие Росатома)
- Всероссийский научно-исследовательский проектно-конструкторский и технологический институт кабельной промышленности
- Чепецкий механический завод (Удмуртия, предприятие Росатома)
- ОАО «Криогенмаш» (Московская область)
- Институт ядерной физики им. Г.И. Будкера Сибирского отделения РАН (Новосибирск)
Подробнее об участии России в проекте ИТЭР на фестивале науки «КСТАТИ» в Новосибирске рассказал руководитель Российского Агентства ИТЭР, доктор физико-математических наук Анатолий Красильников.